Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Asian Pacific Journal of Tropical Biomedicine ; (12): 109-115, 2019.
Article in Chinese | WPRIM | ID: wpr-950375

ABSTRACT

Objective: To determine the anti-neuroinflammatory activity of Moringa oleifera leaf extract (MLE) under lipopolysaccharide stimulation of mouse murine microglia BV2 cells in vitro. Methods: The cytotoxicity effect of MLE was investigated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide assay. The inflammatory response of BV-2 cells were induced with lipopolysaccharide. The generation of nitric oxide levels was determined by using Griess assay and the level of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) was evaluated by ELISA kit. The expression of iNOS, COX-2 as well as IκB-α was carried out by immunoblot analysis. Results: MLE reduced the nitric oxide production in concentration-dependent manner, and maintained the viability of BV-2 microglial cells which indicated absence of toxicity. In addition, MLE repressed the activation of nuclear factor kappa B by arresting the deterioration of IκB-α, consequently resulted in suppression of cytokines expression such as COX-2 and iNOS. Conclusions: MLE inhibitory activities are associated with the inhibition of nuclear factor kappa B transcriptional activity in BV2 microglial cells. Thus MLE may offer a substantial treatment for neuroinflammatory diseases.

2.
Asian Pacific Journal of Tropical Biomedicine ; (12): 394-402, 2018.
Article in Chinese | WPRIM | ID: wpr-950416

ABSTRACT

Objective: To identify the bioactive extracts from Alternanthera sessilis and investigate its cytotoxicity potential against colon cancer cells, HT-29. Methods: This study examined the effects of three parts (aerial, leaf, stem) of whole plant on HT-29 colon cancer cell lines. Three different extracts from the plant parts were prepared by maceration technique using 80% ethanol. The anticancer activities were determined using MTT, clonogenic, cell motility and AOPI assay. The chemical composition profiling was analyzed by GC-MS. Results: Among three plant part extracts, leaf extract greatly suppressed the growth of colon cancer cells in time and dosage-dependent manner, followed by aerial and stem. The cytotoxicity results were rationalized with clonogenic, cell motility and AO/PI assay, where extract showed the most active activity compared to aerial and stem extracts. GC-MS analysis of leaf extract showed there were various recognized anti-cancer, anti-oxidant and anti-inflammatory compounds. Conclusions: Amid the screened extracts, the leaf extract exhibits the credible cytotoxic, anti-proliferative and apoptotic activity and hence, our findings call for additional research to conclude the active compounds and their mechanisms determining the apoptotic activity.

SELECTION OF CITATIONS
SEARCH DETAIL